
International Journal of Computer Trends and Technology Volume 72 Issue 11, 63-71, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P107 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Challenges, Solutions, and Best Practices in Post-

Deployment Monitoring of Machine Learning Models

Surabhi Bhargava1, Shubham Singhal2

1Senior Machine Learning Engineer, Adobe.
2Software Engineer, Adobe.

1Corresponding Author : surabhi9b@gmail.com

Received: 22 September 2024 Revised: 25 October 2024 Accepted: 14 November 2024 Published: 30 November 2024

Abstract - In production environments, machine learning models often encounter data and operational conditions that differ

significantly from the training environment. These differences lead to various challenges, such as data drift, concept drift,

harmful feedback loops, adversarial attacks, model failures, and potential biases that may emerge in real-world applications.

Model interpretability also becomes crucial in these environments, as understanding how models make decisions is necessary

for debugging, trust-building, and mitigating any inadvertent biases that could lead to unfair outcomes. This paper explores

these challenges in depth, presenting effective strategies for handling them. Drawing from industry practices and research

insights, the paper outlines key solutions such as dynamic retraining, versioning, adversarial training, robust monitoring, and

fairness-aware model evaluation to ensure continued model performance and equity post-deployment.

Keywords - MLOps, Data and Concept drift, Model integrity, Adversarial attacks, Feedback loop.

1. Introduction
Once Machine Learning (ML) models are deployed in

production, they are exposed to complex, dynamic

environments that often differ significantly from the

controlled conditions of their development stage. While

extensive research has been conducted to optimize model

performance in training environments, relatively less attention

has been given to the unique set of challenges that arise post-

deployment. In production, models frequently encounter

issues such as data drift, concept drift, harmful feedback loops,

adversarial attacks, and failures in the ML pipeline. These

challenges can result in performance degradation and security

vulnerabilities, making implementing robust monitoring,

retraining mechanisms, and proactive defense strategies

essential.

This paper addresses the gap between training-focused

research and the needs of production environments by

examining post-deployment challenges. Existing studies have

typically focused on enhancing model accuracy and

robustness within controlled settings. This paper focuses on

maintaining model reliability in real-world operational

environments. It provides a comprehensive analysis of

common pitfalls in post-deployment monitoring, performance

degradation, and security vulnerabilities, as well as effective

solutions derived from industry practices and recent

advancements in research. This paper contributes novel

insights and actionable recommendations for ensuring

deployed ML models’ long-term robustness and security by

bridging the gap between academic research and industry

needs.

2. Common Points of Failures
2.1. Data and Concept Drift

2.1.1. Data Drift

Data drift [1, 2] occurs when the input data distribution

used to train a machine learning model diverges from the

distribution of the input data that the model encounters during

deployment. This difference can cause a reduction in the

model’s performance, leading to lower accuracy and less

reliable predictions or decisions.

Mathematically, data drift can be expressed as:

P(x|y) ≠ P(x|y’)

where P(x|y) denotes the probability distribution of the

input data (x) conditioned on the output data (y), and P(x|y’)

represents the probability distribution of the input data given

the new output data (y’) for the deployed model.

Causes of Data Drift

● Changes in Data Sources: Variability in data collection

methods, such as changes in sensors, equipment, or

external data providers, can introduce data drift. Example:

A retail company might change its data provider for

customer demographics, which could lead to

inconsistencies in customer segmentation data.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Surabhi Bhargava & Shubham Singhal / IJCTT, 72(11), 63-71, 2024

64

● User Behavior Changes: User preferences can evolve

over time, affecting applications like recommendation

systems, which rely on historical user behavior to make

predictions. Example: A streaming service’s

recommendation model may start underperforming if user

preferences shift towards a new genre or type of content

not adequately represented in the training data.

● Seasonality and Trends: Cyclical trends in data, such as

seasonal patterns, can lead to periodic data drift.

● Example: In an e-commerce setting, purchase behaviors

during holiday seasons may differ significantly from the

rest of the year, causing fluctuations in data that models

may not be equipped to handle.

● Market Dynamics: For financial models, sudden market

shifts, economic events, or new regulations can cause the

data distribution to drift. Example: During an economic

recession, credit risk models may underperform due to

changes in spending behavior and default rates.

Fig. 1 ML model development lifecycle

2.1.2. Concept Drift

Concept drift [1, 2] occurs when the underlying

relationship between a model’s input and output data evolves

over time. In Concept Drift, the model is trying to predict

changes over time. However, the model continues to operate

as if no changes have occurred. Consequently, the patterns it

learned during training are no longer accurate.

Mathematically, it can be represented as follows:

Pt1 (Y|X) ≠ Pt2 (Y|X)

Examples:

● Spam email detection: Assume a model has been trained

to detect spam emails using a large dataset. Over time,

spam emails evolve, becoming more sophisticated and

resembling legitimate emails. This is an example of

concept drift, where the characteristics that define a spam

email have changed, causing the model’s understanding

of “spam” to become outdated.

● Grocery sales prediction: Assume a model has been

trained to predict the grocery sale pattern over many

ML Model Development

Cycle

Problem Definition and

Planning

Data Acquisition &

Preparation

Model Monitoring &

Feedback

Post Development

Testing - Bias and Model

Interpretability

Model Development Model Deployment

Surabhi Bhargava & Shubham Singhal / IJCTT, 72(11), 63-71, 2024

65

years. The pandemic introduced drastic changes in

grocery sales patterns that disrupted existing predictive

models. People began stockpiling essentials, shifting

preferences towards cooking ingredients, and

increasingly relying on online shopping, while supply

chain disruptions impacted availability. These changes

altered demand patterns, making pre-pandemic data and

trends less relevant.

2.2. Pipeline Integrity Issues

Feature pipelines typically involve various steps such as

data preprocessing, feature extraction, one or more ML

models and external APIs. A change in any upstream or

downstream component, such as feature scaling, input data

formats, or number of input dimensions, can cause errors in

model predictions. For instance, a model expecting RGB

images but receiving grayscale images may fail without

obvious symptoms until errors accumulate.

2.3. Model Interpretability Failures

Model interpretability is crucial for understanding how

and why a model makes certain predictions, especially in high-

stakes fields like healthcare, finance, or criminal justice [3].

When a model is not interpretable, it can obscure critical

issues or errors in its predictions.

Lack of interpretability can also limit trust from

stakeholders and users, who may be unwilling to adopt or rely

on a model they do not understand. Complex models like deep

neural networks are “black boxes” because their internal

decision-making processes are challenging to interpret. When

these models make incorrect predictions, it is difficult to

pinpoint the cause, complicating debugging, retraining, and

correction efforts.

2.4. Bias and Fairness Failures

Bias in machine learning can emerge when the training

data is not representative of the full population or contains

inherent biases. When unchecked, these biases can lead to

unfair and potentially harmful outcomes, especially in

applications that impact people’s lives. Bias and fairness-

related failures include:

● Historical Bias in Training Data: If a model is trained on

biased historical data, it will likely perpetuate or even

amplify those biases in its predictions. For example, if a

hiring algorithm is trained on historical recruitment data

that reflects gender or racial biases, the model may favour

certain groups unfairly.

● Sampling Bias: When data collection processes

unintentionally exclude certain population segments, the

model may become less accurate for those groups. This

can result in lower performance for underrepresented

groups and exacerbate inequalities, particularly in

healthcare or credit scoring sectors.

● Unfair Treatment of Sensitive Attributes: Machine

learning models sometimes make decisions based on

sensitive attributes like age, gender, or race, even if these

features are not directly included in the model. Proxy

variables correlating with these attributes may still

influence model predictions, resulting in discriminatory

outcomes. For instance, a model predicting recidivism

rates may inadvertently assign higher risk scores to

certain demographic groups due to biases embedded in

proxy features. [4]

2.5. User Feedback and Feedback Loops

User feedback is essential to refining and improving

machine learning models in production. However, it can also

introduce complexities and unintended consequences,

especially when feedback loops occur [5, 6, 7]. A feedback

loop arises when the model continuously learns from user

interactions, which can introduce biases or cause it to deviate

from its original generalization objective.

Some common challenges that arise are:

2.5.1. Bias Amplification and Model Overfitting

User feedback mechanisms can unintentionally lead to

bias amplification, where models become overfitted to the

preferences of a small subset of active users. As these users

provide frequent feedback, the model adjusts its parameters

disproportionately toward their specific preferences, causing a

shift in decision boundaries.

Over-optimizing to a localized section of the feature

space compromises the model’s generalization across the

overall distribution, reducing its robustness in serving a

broader population. The feedback mechanism inherently

narrows the model’s capacity to adapt to unseen data,

increasing the risk of biased predictions and reduced fairness.

2.5.2. Feedback Fatigue and Limited Participation

Another challenge is feedback fatigue, where users tire of

providing constant feedback, especially if they do not see

immediate improvements. In many cases, only a small

percentage of users actively provide feedback, which can

skew the model’s learning toward those few users.

2.5.3. Difficulty in Breaking Feedback Loops

Once a feedback loop starts, it can be difficult to break or

reverse. For example, if a model has adjusted heavily based on

feedback from a specific group of users, reverting those

changes without negatively impacting model performance can

be challenging.

2.6. Adversarial Attacks

Adversarial attacks [8, 9] are a significant risk for

deployed Machine Learning (ML) models, particularly as they

are increasingly used in critical applications such as

healthcare, autonomous driving, finance, and security

systems. These attacks exploit vulnerabilities in the models by

intentionally crafting inputs that cause the model to make

incorrect or undesirable predictions. Adversarial attacks pose

Surabhi Bhargava & Shubham Singhal / IJCTT, 72(11), 63-71, 2024

66

a unique challenge because they can be subtle, difficult to

detect, and have serious consequences if successful.

Some common types of Adversarial attacks are listed below.

2.6.1. Evasion Attacks

Evasion attacks [10] exploit the sensitivity of machine

learning models by introducing carefully crafted perturbations

to input data, resulting in misclassifications while remaining

imperceptible to humans. These adversarial perturbations can

be small but strategically designed to cause significant

deviations in the model’s predictions.

For instance, slight modifications to a stop sign image in

image classification may lead a self-driving car’s vision

system to misclassify it, potentially resulting in hazardous

outcomes like traffic accidents. The subtle nature of these

perturbations allows them to bypass human oversight, making

evasion attacks particularly dangerous and challenging to

detect in real-time systems.

2.6.2. Poisoning Attacks

Poisoning attacks [11] occur when an adversary injects

malicious data into the training set, deliberately contaminating

the learning process of a machine learning model. This

manipulation influences the model to behave in ways that

benefit the attacker.

For example, in a spam detection system, an attacker

could introduce adversarial spam emails labeled as non-spam,

thereby corrupting the decision boundary and reducing the

model’s effectiveness in filtering future spam.

These attacks are particularly detrimental to systems that

rely on continuous learning or frequent retraining, as they

regularly incorporate new data into the model. In the case of

fraud detection, an attacker might inject fraudulent transaction

data labeled as legitimate, compromising the model’s ability

to identify fraudulent behavior accurately and leading to

systemic vulnerabilities.

2.6.3. Model Inversion Attacks

Model inversion attacks [12] refer to adversarial activities

to reverse-engineer sensitive training data by systematically

querying a machine learning model and analyzing its outputs.

Through this process, attackers can infer private details from

the training set, exposing information such as personal data or

patterns related to specific individuals.

These attacks raise significant privacy concerns,

particularly when models are trained on sensitive datasets,

such as medical records, financial data, or Personally

Identifiable Information (PII). For example, in facial

recognition systems, an adversary could leverage the model’s

outputs to reconstruct visual representations of individuals

from the training data, potentially leading to severe privacy

breaches and unauthorized data exposure.

3. Solutions and Best Practices
3.1. Handling Data and Concept Drift

3.1.1. Regular Monitoring of Data Distributions

Continuous monitoring of training data distributions and

production data is essential for detecting data and concept

drift. Statistical techniques, such as the Population Stability

Index (PSI) or entropy-based drift detection, can identify

significant deviations in feature distributions or prediction

patterns from the original training data. Early detection of such

drifts ensures timely corrective actions and maintains model

reliability in production environments.

3.1.2. Dynamic Retraining

As data and feature relationships evolve, dynamic

retraining becomes critical to model adaptation. Establishing

automated pipelines that periodically incorporate fresh

production data into the retraining process helps models

evolve with real-world changes. Retraining cycles can be

triggered based on predefined drift metrics, enabling the

model to stay aligned with the current data distribution and

maintain optimal performance. [1, 2]

3.2. Ensuring Pipeline Integrity to Prevent ML Pipeline

Failures

3.2.1. Implementing Contracts for Model Inputs and Outputs

Defining a strict contract for the expected format and

input data type helps ensure that any changes in upstream

components are flagged before they cause model failures.

3.2.2. Data and Model Versioning

Versioning the entire pipeline, from data preprocessing,

feature engineering and model training, enables teams to track

changes, pinpoint performance degradation, and revert to

previous configurations when necessary.

3.2.3. Automated Unit and Integration Testing

Unit testing of individual components and integration

testing are used to verify the seamless interaction between

these components and validate the pipeline’s overall

functionality and reliability. [13]

3.3. Improving Model Interpretability

Improving model interpretability ensures that Machine

Learning (ML) models are transparent, trustworthy, and

accountable, particularly in high-risk domains where model

predictions can significantly impact individuals and society.

Below are strategies for improving the interpretability of ML

models, especially in complex systems like deep learning -

3.3.1. Use of Interpretable Models

Choosing inherently interpretable models can simplify

the process in situations where interpretability is a top priority.

Models such as decision trees, linear regression, and logistic

regression are transparent and allow an easy understanding of

how input features contribute to the final predictions.

Surabhi Bhargava & Shubham Singhal / IJCTT, 72(11), 63-71, 2024

67

3.3.2. Model-Agnostic Interpretability Methods

For more complex, black-box models like deep neural

networks, model-agnostic interpretability techniques provide

a way to explain predictions without altering the underlying

model architecture. Two popular approaches are:

3.3.3. LIME (Local Interpretable Model-agnostic

Explanations)

 LIME approximates complex models with interpretable

surrogate models by perturbing the input data and observing

the impact on model predictions. This provides local

explanations for individual predictions, making understanding

why a model behaves a certain way for a specific input easier.

[14]

3.3.4. SHAP (SHapley Additive exPlanations)

SHAP assigns importance values to each feature in a

model by computing Shapley values based on cooperative

game theory. SHAP can explain how each feature influences

a prediction, allowing for consistent and comparative feature

importance rankings across different inputs. [15]

3.3.5. Visualization Techniques

Visualization is a powerful tool for interpreting and

understanding how models make decisions, especially for

deep learning models. Some of the common techniques for

visualization are mentioned below:

• Activation Maps: In Convolutional Neural Networks

(CNNs), activation maps can highlight which parts of the

input image are most influential in the model’s decision-

making process. This helps reveal which features are

considered most important in image classification tasks.

[16]

• Saliency Maps: These maps indicate which parts of the

input data (e.g., pixels in an image or words in text) are

most sensitive to changes in the output, showing the

influence of specific features on model predictions.[17]

• Partial Dependence Plots (PDPs): PDPs show how the

model’s output changes as a single feature varies,

providing insight into the relationship between input

features and model predictions.[18]

3.4. Mitigating Bias and Ensure Fairness

Mitigating bias and ensuring fairness in machine learning

models is essential to avoid discriminatory outcomes,

particularly in sensitive applications. Here are key techniques

[19, 20, 21, 22, 23] to mitigate biases and ensure fairness.

3.4.1. Preprocessing Techniques

• Reweighting and Resampling: Adjust data to ensure

underrepresented groups are sufficiently represented

(e.g., oversampling minority groups).

• Data Augmentation: Generate synthetic data to balance

representation.

• Fair Representation Learning: Transform data to reduce

correlations with sensitive attributes.

3.4.2. In-Training Techniques

• Fairness Constraints in Training: Introduce fairness

constraints during model training to ensure equitable

outcomes (e.g., equal opportunity, demographic parity).

• Adversarial Debiasing: Use adversarial networks to

prevent models from learning biased patterns.

• Regularization for Fairness: Add fairness terms to the

loss function to penalize biased outcomes during training.

3.4.3. Post-Processing Techniques

• Equalized Odds and Calibration: Adjust predictions post-

training to ensure fairness across groups (e.g., equal true

positive rates).

• Re-ranking: Modify the ranking of predictions to ensure

equitable representation of underrepresented groups.

• Bias Correction: Adjust outputs to remove correlations

between sensitive attributes and predictions.

3.4.4. Fairness-Aware Model Evaluation

• Fairness Metrics: Regularly assess models using metrics

like demographic parity, equalized odds, and disparate

impact.

• Group vs. Individual Fairness: Balance fairness at the

group level (across demographics) and individual level

(ensuring similar individuals are treated equally).

3.5. Managing User Feedback and Avoiding Feedback

Loops

3.5.1. Human-in-the-Loop Monitoring

Instead of automatically adjusting model behavior based

on user feedback, human-in-the-loop systems can be

employed to review and validate feedback before making

changes to the model. This reduces the risk of incorporating

biased or incorrect feedback into the model. For example, in a

language model for customer support, instead of allowing

every user-corrected response to update the model, humans

can review a sample of user feedback to ensure only accurate,

unbiased corrections are used to improve the model.

3.5.2. User-Specific Feedback Channels

Rather than learning directly from all user interactions,

models can benefit from selective feedback channels that

separate useful corrections from biased or irrelevant data.

These channels should be closely monitored to ensure that

feedback is constructive. For example, in a product review

sentiment analysis model, feedback from verified or frequent

reviewers may be given more weight rather than learning from

every rating given by users, as they are more likely to provide

reliable feedback.

3.6. Protecting Against Adversarial Attacks

3.6.1. Adversarial Training

One of the most effective defenses against adversarial

attacks is adversarial training, where the model is trained on

examples that are intentionally designed to mislead it. This

process strengthens the model’s ability to resist attacks by

Surabhi Bhargava & Shubham Singhal / IJCTT, 72(11), 63-71, 2024

68

making it more robust to small perturbations in input data [24,

25]. The main types of adversarial training methodologies are

highlighted below:

• Basic Adversarial Training: In basic adversarial training,

adversarial examples are generated for each batch of data

during training. These adversarial examples are combined

with the original ones, allowing the model to learn both

true and perturbed data distributions. This method

enhances robustness against simple attacks. However, it

may not defend against more sophisticated attacks like

iterative or multi-step adversarial attacks.

• Projected Gradient Descent (PGD) Adversarial

Training: PGD-based adversarial training is one of the

most robust adversarial defense techniques. This

approach uses multiple iterations of small gradient steps

to generate adversarial examples. The model then trains

on these stronger, multi-step adversarial examples, which

are generally harder to defend against. This methodology

significantly improves robustness against a wide range of

adversarial attacks, as it exposes the model to high-

complexity perturbations. However, PGD-based training

is computationally intensive, as it requires generating

multiple adversarial examples per input.

• Adversarial Training with Regularization: Techniques

like TRADES (TRadeoff-inspired Adversarial DEfense

via Surrogate-loss) incorporate a regularization term that

balances the tradeoff between natural accuracy (on clean

data) and adversarial robustness. This approach helps to

optimize both robustness and generalization by

regularizing the loss during training.

• Domain-Specific Adversarial Training: In domain-

specific adversarial training, adversarial examples are

crafted to represent domain-specific attack scenarios,

such as specific perturbations in medical imaging or

sensor noise in autonomous systems. The model is then

trained on these specialized adversarial examples. This

approach is highly effective in niche domains as it directly

addresses common perturbation patterns within the

domain. However, it may not generalize well to attacks

outside the targeted scenarios.

• Differential Privacy and Encryption: Using techniques

like differential privacy ensures that the model does not

leak sensitive information even when exposed to

• adversarial examples. Additionally, encrypting the data

pipeline reduces the risk of data manipulation.[26]

• Defensive Distillation: A defense mechanism that

leverages distillation, a method traditionally used to

transfer knowledge from a large model (teacher) to a

smaller model (student) to resist adversarial

perturbations. In this context, defensive distillation works

by training the model in two stages:

1. Distillation training: A neural network is first trained

normally (as a teacher model). Then, a second network

(the student model) is trained to mimic the softened

output probabilities (rather than hard labels) from the

teacher model. A temperature parameter in the SoftMax

function controls this softening, making the student

model learn a more generalized representation of the data.

2. Robustness against Adversarial Attacks: The resulting

student model tends to be less sensitive to small

perturbations, which adversarial attacks rely on to

mislead the model. The softened probabilities help the

model focus on the overall structure of the data rather than

fine-grained details, making it harder for adversarial

examples to exploit weaknesses in the decision boundary.

[27]

4. Conclusion
Deploying machine learning models into production

presents various challenges, such as data drift, pipeline

failures, limited interpretability, biased outputs, undesirable

feedback loops, and adversarial attacks. To address these

issues and ensure model reliability, machine learning

engineers can adopt best practices like regular monitoring,

comprehensive testing, promoting bias-free and interpretable

models, implementing automated retraining, and employing

adversarial training. As machine learning becomes

increasingly integral to industry applications, establishing

robust post-deployment strategies is crucial for maintaining

these systems’ long-term effectiveness and security.

5. Future Research and Open Challenges
Future research in ML monitoring and management is

focused on addressing several key challenges, such as

automating drift detection and adaptation, improving model

interpretability and explainability, and ensuring the security

and robustness of distributed and federated learning systems.

The scalability of monitoring systems for large-scale

deployments, privacy-preserving techniques for model

evaluation, and continuous bias and fairness monitoring are

also crucial areas for exploration. Additionally, there is a need

for standardized frameworks for model transparency and

auditing in regulated industries to ensure compliance with

legal and ethical standards. Key open questions include

efficiently detecting drift, balancing privacy with model

performance, and mitigating bias in real-time deployments.

By addressing these challenges, future research will enable

more robust, secure, fair, and scalable ML systems, ensuring

their safe and effective use across a wide range of applications.

Conflicts of Interest
The authors receive no financial compensation for this

work, and the views expressed are solely their own, not those

of their employer. The authors declare that there is no conflict

of interest regarding the publication of this paper.

Funding Statement
The authors declare that this research was self-funded and

part of an independent research

Surabhi Bhargava & Shubham Singhal / IJCTT, 72(11), 63-71, 2024

69

Fig. 2 Challenges and Key solutions

Data & Concept Drift

Monitor Data Distributions (training &

production)

Dynamic Re-training

Pipeline Integrity

Implement Model Contracts

Automated Unit & Integration Testing

Data and Model Versioning

User Feedback & Feedback Loops

Human-in-the-loop Monitoring

Selective Feedback Channels

Model Interpretability

Using Interpretable Models

Visualization

Model-Agnostic Interpretability

Bias and Fairness

Pre-processing Techniques

Post-processing Techniques

In-processing Techniques

Fairness-Aware Model Evaluation

Adversarial Attacks

Adversarial Training

Defensive Distillation

Differential Privacy & Encryption

Surabhi Bhargava & Shubham Singhal / IJCTT, 72(11), 63-71, 2024

70

Table 1. Common tools and frameworks for real-time monitoring of ML models

Tool/Framework Description

Prometheus & Grafana

[28]

Open-source monitoring tools used to track system and model performance metrics.

Prometheus collects time-series data, while Grafana visualizes it in customizable dashboards.

Best suited for large-scale systems but lacks specific features for ML models.

Evidently AI

[29]

A specialized tool for real-time monitoring of ML models, focusing on data drift, performance

tracking, and model evaluation. Offers pre-built reports for easy interpretation but may require

customization for advanced use cases.

Arize AI

[30]

A dedicated platform for ML observability and troubleshooting, offering real-time monitoring

of model performance, drift detection, and error analysis. Provides powerful visualizations and

alerts, but is proprietary and may require integration work.

Fiddler AI

[31]

Specializes in explainable AI (XAI) and model transparency, providing tracking for model

performance, fairness, and interpretability. Customizable metrics and alerts are available,

though it may be costly for large deployments.

Amazon SageMaker

Model Monitor

[32]

A built-in tool within AWS SageMaker for monitoring models deployed on the AWS cloud. It

provides drift detection and performance tracking, making it ideal for teams already using

AWS services but limited to AWS environments.

Azure Monitor & MLOps

[33]

Native to the Azure ecosystem, it integrates directly with Azure Machine Learning for

monitoring logs, model metrics, and alerts. It is scalable and cloud-native but less flexible for

multi-cloud setups.

References
[1] Jie Lu et al., “Learning under Concept Drift: A Review,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 12, pp.

2346-2363, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[2] Joao Gama et al., “A Survey on Concept Drift Adaptation,” ACM Computing Surveys (CSUR), vol. 46, no. 4, pp. 1-37, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

[3] Sungsoo Ray Hong et al., “Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs,” Proceedings of the ACM

on Human-Computer Interaction, vol. 4, pp. 1-26, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[4] Harini Suresh, and John V. Guttag, “A Framework for Understanding Unintended Consequences of Machine Learning Life Cycle,”

EAAMO '21: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, Newyork,

USA, pp. 1-9, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] David Carless, “Feedback Loops and the Longer-Term: Towards Feedback Spirals,” Assessment & Evaluation in Higher Education, vol.

44, no. 5, pp. 705-714, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Nicolò Pagan et al., “A Classification of Feedback Loops and their Relation to Biases in Automated Decision-Making Systems,” EAAMO

'23: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, Boston MA USA, pp.

1-14, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Rohan Taori, and Tatsunori Hashimoto, “Data Feedback Loops: Model-Driven Amplification of Dataset Biases,” Proceedings of the 40th

International Conference on Machine Learning, pp. 33883-33920, 2023. [Google Scholar] [Publisher Link]

[8] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining and Harnessing Adversarial Examples,” Proceedings of the

International Conference on Learning Representations (ICLR), pp. 1-11, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[9] Anirban Chakraborty et al., “A Survey on Adversarial Attacks and Defences,” CAAI Transactions on Intelligence Technology, vol. 6, no.

1, pp. 25-45, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Battista Biggio et al., “Evasion Attacks Against Machine Learning at Test Time,” Machine Learning and Knowledge Discovery in

Databases: European Conference, ECML PKDD 2013, pp. 387-402, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[11] Zhiyi Tian et al., “A Comprehensive Survey on Poisoning Attacks and Countermeasures in Machine Learning,” ACM Computing

Surveys, vol. 55, no. 8, pp. 1-35, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart, “Model Inversion Attacks that Exploit Confidence Information and Basic

Countermeasures,” CCS '15: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver

Colorado USA, pp. 1322-1333, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[13] Andika Rachman, Tieling Zhang, and R.M. Chandima Ratnayake, “Applications of Machine Learning in Pipeline Integrity Management:

A State-of-the-Art Review,” International Journal of Pressure Vessels and Piping, vol. 193, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[14] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “Model-Agnostic Interpretability of Machine Learning,” arXiv, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TKDE.2018.2876857
https://scholar.google.com/scholar?q=Learning+under+Concept+Drift:+A+Review&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/8496795
https://doi.org/10.1145/2523813
https://scholar.google.com/scholar?q=A+Survey+on+Concept+Drift+Adaptation&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/2523813
https://doi.org/10.1145/3392878
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Human+factors+in+model+interpretability%3A+Industry+practices%2C+challenges%2C+and+needs&btnG=
https://dl.acm.org/doi/abs/10.1145/3392878
https://doi.org/10.1145/3465416.3483305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+framework+for+understanding+unintended+consequences+of+machine+learning.&btnG=
https://dl.acm.org/doi/10.1145/3465416.3483305
https://doi.org/10.1080/02602938.2018.1531108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feedback+loops+and+the+longer-term%3A+towards+feedback+spirals&btnG=
https://www.tandfonline.com/doi/full/10.1080/02602938.2018.1531108
https://doi.org/10.1145/3617694.3623227
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+classification+of+feedback+loops+and+their+relation+to+biases+in+automated+decision-making+systems&btnG=
https://dl.acm.org/doi/abs/10.1145/3617694.3623227
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+feedback+loops%3A+Model-driven+amplification+of+dataset+biases&btnG=
https://proceedings.mlr.press/v202/taori23a.html
https://doi.org/10.48550/arXiv.1412.6572
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Explaining+and+Harnessing+Adversarial+Examples&btnG=
https://arxiv.org/abs/1412.6572
https://doi.org/10.1049/cit2.12028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+adversarial+attacks+and+defences.&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cit2.12028
https://doi.org/10.1007/978-3-642-40994-3_25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evasion+attacks+against+machine+learning+at+test+time&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-40994-3_25
https://doi.org/10.1145/3551636
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+survey+on+poisoning+attacks+and+countermeasures+in+machine+learning.&btnG=
https://dl.acm.org/doi/abs/10.1145/3551636
https://doi.org/10.1145/2810103.2813677
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+inversion+attacks+that+exploit+confidence+information+and+basic+countermeasures&btnG=
https://dl.acm.org/doi/abs/10.1145/2810103.2813677
https://doi.org/10.1016/j.ijpvp.2021.104471
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applications+of+machine+learning+in+pipeline+integrity+management%3A+A+state-of-the-art+review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0308016121001666
https://doi.org/10.48550/arXiv.1606.05386
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-agnostic+interpretability+of+machine+learning&btnG=
https://arxiv.org/abs/1606.05386

Surabhi Bhargava & Shubham Singhal / IJCTT, 72(11), 63-71, 2024

71

[15] Edoardo Mosca et al., “SHAP-Based Explanation Methods: A Review for NLP Interpretability,” Proceedings of the 29th International

Conference on Computational Linguistics, Gyeongju, Republic of Korea, pp. 4593-4603, 2022. [Google Scholar] [Publisher Link]

[16] Qinglong Zhang, Lu Rao, and Yubin Yang, “A Novel Visual Interpretability for Deep Neural Networks by Optimizing Activation Maps

with Perturbation,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, pp. 3377-3384, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[17] Ahmed Alqaraawi et al., “Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study,” IUI '20:

Proceedings of the 25th International Conference on Intelligent User Interfaces, Cagliari Italy, pp. 275-285, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[18] Julia Moosbauer et al., “Explaining Hyperparameter Optimization via Partial Dependence Plots,” Advances in Neural Information

Processing Systems, vol. 34, pp. 2280-2291, 2021. [Google Scholar] [Publisher Link]

[19] Bobby Yan, Skyler Seto, and Nicholas Apostoloff, “FORML: Learning to Reweight Data for Fairness,” arXiv, pp. 1-9, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[20] Shubham Sharma et al., “Data Augmentation for Discrimination Prevention and Bias Disambiguation,” AIES '20: Proceedings of the

AAAI/ACM Conference on AI, Ethics, and Society, Newyork, United States, pp. 358-364, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[21] Ehsan Adeli et al., “Representation Learning with Statistical Independence to Mitigate Bias,” Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, Conference on Applications of Computer Vision (WACV), pp. 2513-2523, 2021. [Google

Scholar] [Publisher Link]

[22] Jongin Lim et al., “Bias-Adv: Bias-Adversarial Augmentation for Model Debiasing,” Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, (CVPR), pp. 3832-3841, 2023. [Google Scholar] [Publisher Link]

[23] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma, “Fairness-Aware Learning through Regularization Approach,” 2011 IEEE 11th

International Conference on Data Mining Workshops, Vancouver, BC, Canada, pp. 643-650, 2011. [CrossRef] [Google Scholar]

[Publisher Link]

[24] Tao Bai et al., “Recent Advances in Adversarial Training for Adversarial Robustness,” arXiv, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[25] Ali Shafahi et al., “Adversarial Training for Free!,” Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 2019.

[Google Scholar] [Publisher Link]

[26] Trung Ha et al., “Differential Privacy in Deep Learning: An Overview,” 2019 International Conference on Advanced Computing and

Applications (ACOMP), Nha Trang, Vietnam, pp. 97-102, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[27] Nicolas Papernot et al., “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks,” 2016 IEEE Symposium

on Security and Privacy (SP), San Jose, CA, USA, pp. 582-597, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[28] Get started with Grafana and Prometheus, Grafana Labs. [Online]. Available: https://grafana.com/docs/grafana/latest/getting-started/get-

started-grafana-prometheus/

[29] Evidently AI, Collaborative AI Observability platform, Evaluate, Test, and Monitor your AI-Powered Products. [Online]. Available:

https://www.evidentlyai.com/

[30] Arize AI, AI Observability and Evaluation Platform. [Online]. Available: https://arize.com/

[31] Fiddler AI, Enterprise AI Observability. [Online]. Available: https://www.fiddler.ai/

[32] Data and Model Quality Monitoring with Amazon SageMaker Model Monitor. [Online]. Available:

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html

[33] Machine Learning Operations (MLOps), Azure Monitor & MLOps. [Online]. Available:

https://azure.microsoft.com/en-us/solutions/machine-learning-ops

https://scholar.google.com/scholar?q=SHAP-based+explanation+methods:+a+review+for+NLP+interpretability&hl=en&as_sdt=0,5
https://aclanthology.org/2022.coling-1.406/
https://doi.org/10.1609/aaai.v35i4.16450
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+visual+interpretability+for+deep+neural+networks+by+optimizing+activation+maps+with+perturbation.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+visual+interpretability+for+deep+neural+networks+by+optimizing+activation+maps+with+perturbation.&btnG=
https://ojs.aaai.org/index.php/AAAI/article/view/16450
https://doi.org/10.1145/3377325.3377519
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+saliency+map+explanations+for+convolutional+neural+networks%3A+a+user+study&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+saliency+map+explanations+for+convolutional+neural+networks%3A+a+user+study&btnG=
https://dl.acm.org/doi/abs/10.1145/3377325.3377519
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Explaining+hyperparameter+optimization+via+partial+dependence+plots&btnG=
https://proceedings.neurips.cc/paper/2021/hash/12ced2db6f0193dda91ba86224ea1cd8-Abstract.html
https://doi.org/10.48550/arXiv.2202.01719
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Forml%3A+Learning+to+reweight+data+for+fairness&btnG=
https://arxiv.org/abs/2202.01719
https://doi.org/10.1145/3375627.3375865
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+augmentation+for+discrimination+prevention+and+bias+disambiguation&btnG=
https://dl.acm.org/doi/abs/10.1145/3375627.3375865
https://dl.acm.org/doi/abs/10.1145/3375627.3375865
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Representation+learning+with+statistical+independence+to+mitigate+bias&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Representation+learning+with+statistical+independence+to+mitigate+bias&btnG=
https://openaccess.thecvf.com/content/WACV2021/html/Adeli_Representation_Learning_With_Statistical_Independence_to_Mitigate_Bias_WACV_2021_paper.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Biasadv%3A+Bias-adversarial+augmentation+for+model+debiasing&btnG=
https://openaccess.thecvf.com/content/CVPR2023/html/Lim_BiasAdv_Bias-Adversarial_Augmentation_for_Model_Debiasing_CVPR_2023_paper.html
https://doi.org/10.1109/ICDMW.2011.83
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fairness-aware+learning+through+regularization+approach&btnG=
https://ieeexplore.ieee.org/abstract/document/6137441
https://doi.org/10.48550/arXiv.2102.01356
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+advances+in+adversarial+training+for+adversarial+robustness&btnG=
https://arxiv.org/abs/2102.01356
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adversarial+training+for+free&btnG=
https://proceedings.neurips.cc/paper_files/paper/2019/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
https://doi.org/10.1109/ACOMP.2019.00022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Differential+privacy+in+deep+learning%3A+an+overview&btnG=
https://ieeexplore.ieee.org/abstract/document/9044259
https://doi.org/10.1109/SP.2016.41
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distillation+as+a+defense+to+adversarial+perturbations+against+deep+neural+networks&btnG=
https://ieeexplore.ieee.org/abstract/document/7546524

